Topic 11c: Probability: Continuous Cases

Some word of warning is due here. This section presents useless material in the sense the
Apfelton and Blumenkopf distributions are a figment of my imagmation. The goal here 1s
to demonstrate probability distributions for continuous function. We can see what they
are like, how to use them, how to read values from tables, and how to use R functions to
get values. In future topics we will encounter real continuous probability distributions and
then we can apply all that we learn here to those functions.

Pomt One: Continuous probability distributions are different from discrete probability
distributions. In the discrete case we might ask P(X =2) but in a continuous case the
probability that X 1s equal to any specific value 1s 0. All we can do 1s to ask for the
probability that X is less than a value, or X is greater than a value, or X is between two
values, or X 1s less than one value or it is greater than a different value. A small
consequence of this distinction is that in these situations P(X<2) = P(X<2) since the
P(X=2)10.

Here 1s a graph of the Apfelton probability distribution.
Figure 1

Apfelton Density Function
025 S : :
020 oot . - L

//- _H /

015 — . / : it
010 — i A ' : 5

. _;?/
0.05 — /
0.00

I I T T T T T 1T T 11

Xvalues from-2to 5

The really important points here are that the function is defined for x values in the
mterval from -2 to 5 and that the area under the curve, and above the x-axis, from -2 to 5
is exactly 1. Therefore, for any value, say 3, between -2 and 5. inclusive, we can take
the area under the curve and to the left of the line y=3 and make that area the P(X<3).

Look at the Apfelton distribution link on the web page.
With the probability table available we can solve all four types of problems:
P(X<3)= P(-145<X<1.63)=

P(X>34)= P(X <054 0r X =2.04)=

Now, instead of using the table. use the papfelton() function that we can load mto our R

envirionment.

3 # first load the papfelton() function

4 #

5 # this will actually loaded both papfelton() and
6 # gapfeltonO)

7 source("../apfelton.R")

10
11
12
13
14
15
16

1 Global Environment =

Functions
papfelton function
gapfelton function
papfelton(3) # solves P(X<3)

1 - papfelton(3.4) # solves P(X>3.4)
or, using the alternative approach
papfelton(3.4, lower.tail=FALSE) # also solves P(X>3.4)
papfelton(1.63) - papfelton(-1.45) #solves P(-1.45<X<1
papfelton(0.54) + (1-papfelton(2.04)) #solves P(X<0.54 or
or, using the alternative approach
papfelton(0.54)+papfelton(2.04, Tower.tail=FALSE)

o # Now solve the problems
> papfelton(3) # solves P{X<3)
[1] 0.6957328

(v, lower.tail = TRUE)
(q, lower.tail TRUE)

.63)
X>2.04)

> 1 - papfelton(3.4) # solves P(X>3.4)

[1] 0.2421646

> # or, using the alternative approach
> papfelton(3.4, Tower.tail=FALSE) # also solves P(X>3.4)

[1] 0.2421646

> papfelton(1.63) - papfelton(-1.45) #solves P(-1.45<X<1.63)

[1] 0.4340971

> papfelton(0.54) + (1-papfelton(2.04)) #solves P(X<0.54 or X>2.04)

[1] 0.7073376

% # or, using the alternative approach
> papfelton(0.54)+papfelton(2.04, Tower.tail=FALSE)

[1] 0.7073376

So far we have seen problems where we are given a value, x, and then we are

asked to find the probability such as getting that value or less, P(X<x). We can
solve this using the table of probabilities, or by using papfelton().

How can we solve a problem such as "Find the x value such that P(X<x)=0.35?"
We can find that answer by using the table "backwards."

Find y such that P(X<y) =0.35. Answer:y=

Between 1.16 and 1.17.
Probably close to 1.166.

Find y such that P(X>y) =0.17. To do this we have to remember that if
P(X>y)=0.17 then P(X<y) must be 1.0 - 0.17 = 0.83. Then we can use the table to
find y such that P(X<y)=0.83. That y is the answer to the original problem.

y=

Between 3.90 and 3.91. almost certainly close to 3.905.

We could use papfelton() to find these answers by doing a successive approximation. That
would be very inefficient for us, though not bad for a computer. Fortunately, we have a

different function, gapfelton(), that will do this "backwards" problem for us. Here is how we
can solve the two problems using gapfelton().

18 # now solve the "backwards" problem if finding a

19 # value, y, such that P(X<=y)=0.35. We use

20 # gapfleton() to do this.

21 qgapfelton(0.35)

22 # find y such that POG=y) = 0.17.

23 # We could do this as

24 qapfelton(1-0.17)

25 # or we could use the lower.tail=FALSE parameter

26 qapfelton(0.17, lower.tail=FALSE)

> # now solve the "backwards" problem if finding a
> # value, y, such that P(X<=y)=0.35. We use
> # gapfleton() to do this.
> gapfelton(0.35)
[1] 1.166635

<3 # find y such that POG=y) = 0.17.

> # We could do this as

> gapfelton(1-0.17)

[1] 3.904935

> # or we could use the lower.tail=FALSE parameter
> gapfelton(0.17, lower.tail=FALSE)

[1]1 3.904935

As part of this intfroduction we move onto the Blumenkopf probability distribution. It has the
following graph.

Blumenkopf Density Function
030 —
025 o ,
R 8 R TRE
015
0.10 —
0.05 —
0.00

Here we see that the Blumenkopf distribution is defined for x being between -3.6 and 3.6. The
area under the curve and above the x-axis is 1.0. Again, the P(X<-2.4) is the area under the
curve and to the left of -2.4. Also, and this is an important distinction, the Blumenkopf
distribution is symmetric. Thus, the P(X<-2.4) =P(X>2.4). We have a table of values for the
Blumenkopf distribution (see the web page link). And, fortunately, we can load the
pblumenkopf() and qblumenkopf() functions.

P(X<-2.4)—
P(X>2.4)=
P(-1.335 <X <0.827) =

P(X<12 orX>213)=

28
29
30
31
32
33
34
35
36
37
38
39

start using pblumenkopf()
source("../blumenkopf.R")
find P(X < -2.4)
pblumenkopf(-2.4)
find P(X > 2.4)
1 - pblumenkopf(2.4) # the old, short way
pblumenkopf(2.4, lower.tail=FALSE) # the way that is more clear
find P(-1.335 < X < 0.827)
pblumenkopf(0.827) - pblumenkopf(-1.335)
2 Find PC X <1.2 o+ X> .13)
pblumenkopf(1.2) + (1 - pblumenkopf(2.13)) #old
pblumenkopf(1.2) + pblumenkopf(2.13, lower.tail=FALSE) #new

> # start using pblumenkopf()
> source("../blumenkopf.R")
> # find PC X < -2.4)

> pblumenkopf(-2.4)

[1] 0.143586

> # find PC X > 2.4)

> 1 - pblumenkopf(2.4) # the old, short way

[1] 0.143586

> pblumenkopf(2.4, Tower.tail=FALSE) # the way that 1is more clear
[1] 0.143586

> # tind P(-1.335 < X < 0.827)

> pblumenkopf(0.827) - pblumenkopf(-1.335)

[1] 0.1184279

> # Find PC X <1.2 or X> 2.13)

> pblumenkopf(1.2) + (1 - pblumenkopf(2.13)) #old

[1] 0.7846857

> pblumenkopf(1.2) + pblumenkopf(2.13, lower.tail=FALSE) #new
[1] 0.7846857

And we can use gblumenkopf() to solve the "backwards" problems.

Find v such that P(X <y) =0.513: Find vsuch that P(X<-yor X>y)=0.123:
Find y such that P(X>y)=0.823: Find vy such that P(-y<X <y)=0.950:
40 # Find y such that P(X <y) = 0.513

41 gblumenkopf(0.513)

42 # Find y such that P{ X >y) = 0.823

43 gblumenkopf(1 - 0.823) # old way

44 gblumenkopf(0.823, Tower.tail=FALSE) # better way

45 # Find vy such that P(X < =y or X >y) = 0.123

46 gblumenkopf(0.123/2, lower.tail=FALSE)

47 # Find v such that P(-y <« X <y) = 0.950

48 gblumenkopf((1-0.950)/2, lower.tail=FALSE)

> # Find y such that P(X <y) = 0.513

> gblumenkopf(0.513)

[1] 0.6620361

> # Find y such that P{ X > yv) = 0.823

> gblumenkopf(1 - 0.823) # old way

[1] -2.269995

> gblumenkopf(0.823, Tower.tail=FALSE) # better way
[1] -2.269995

> # Find y such that P(X < -y or X >y) = 0.123
> gblumenkopf(0.123/2, lower.tail=FALSE)

[1] 2.775806

> # Find y such that P{ -y <« X <y) = 0.950

> gblumenkopf((1-0.950)/2, lower.tail=FALSE)

[1] 3.025195

